Atomic Energy Central Schoool No.4 Rawatbhata Multiple Choice Test (January 2019) Class XI, (Physics, Chemistry, Biology)

MM: 60 Time : 60 minutes

1				4×10^{-5} per unit of 100 atmosphere			ic pressure. The decr	ease in	volume of 100
	A)	0.4cm ³	B)	4x 10-5cm3	C)	00	0.004cm ³	D)	0.025cm ³
2		-		e major-axis of th			un are r1and r2. Its d wn from the sun is	istance	from the sun
	A)	(r1 + r2)/4	B)	(r1 + r2)/3	C)	2	$\frac{2(r1 \times r2)}{(r1 + r2)}$	D)	(r1 + r2)/(r1 - r2)
3	viscou	s liquid of coefficient of viscosity	icient of γ γη and ra	viscosity depends dius r. Which of	on note the	nass o llowi	ng under gravity thro f the ball m, accelera ng relations is dimen	ation du sionall	ue to gravity g, y correct?
	Α)	$v_t \propto \frac{mgr}{n}$	٥)	v _t ∝mg <i>η</i> r	0)		$v_t \propto \frac{mg}{r\eta}$	D)	$v_i \propto \frac{\eta mg}{r}$
4	separa	gravitational for	ce betwee	en two objects we	re pro	oporti	onal to 1/R (and not der such a force wou	as 1/R ²	²) where R is
	A)	1/R	B)	R^0	C)	R		D)	$1/R^2$
5	The an A)	agle of contact be 1350°	etween p	ure water and pur 45°	e glas C)	ss, is 90	0	D)	0°
6		tional potential,					Y, V, E, and L stands lar moment bout the		
	A)	T is conserved	B)	L is conserved but direction of vector L changes continuously	C)	E is a	always negative	D)	V is always positive
7					nderg	goes c	floats in a liquid of doscillation with a time 1/√m	e perio	
8		bubble has radi	us r and	volume V. If the	exces	s pres	ssure inside the bubb	le is P.	Then PV is
	A)	r	B)	r^4	C)	\mathbf{r}^3		D)	r^2
9	A sate total e		is orbitin	g around the eart	h in a	circu	lar orbit with a veloc	city v.	What will be its
	A)		B)	$(1/2) \text{ mv}^2$	C)	mv^2		D)	$-(1/2)mv^2$
10		is falling in a lal us of the materia	-		ı decr	ease (of 0.1% in its volume	e at the	bottom. The bulk

	A)	19.6 ×10 ⁻⁸ N/m2	B)	19.6 ×10 ⁸ N/m2	C)	19.6 ×10 ⁻¹⁰ N/m2	D)	19.6 ×10 ¹⁰ N/m2
11	A seco	onds pendulum is comes down with uniform acceleration	s mounte B)	d in a rocket. Its moves round the earth in a geostationary orbit	perio C)	d of oscillation decreases moves up with a uniform velocity	when th D)	ne rocket moves up with uniform acceleration
12		inetic energy of of 31 J/ mole K)	one gram		ıs at r	normal temperature and pr	essure i	is
	A)	3.4×10^3	B)	2.97×10 ³	C)	1.2×10 ³	D)	0.66×10^3
13	A big A)	drop of radius R R/10	is forme B)	d by 1000 small (R/100	dropl C)	ets of water, the radius of R/500	small d D)	rop is R/1000
14						rface of the earth. Another	satellit	ee B of mass 2m is
	A) 1:		B)	1:16	C)	periods are in the ratio of 1:32	D)	$1:2\sqrt{2}$
15				ross -sectional ard nd. Young's modu		50 mm2is stretched by 0.5	5mm, w	hen a mass of
		$9.6 \times 10^{20} \text{N/m}^2$		$19.6 \times 10^{18} \text{N/m}^2$		$19.6 \times 10^{15} \text{N/m}^2$	D)	$19.6 \times 10^{10} \text{N/m}^2$
16		scape velocity fro the vertical, the			body	is to be projected in a dir	rection	making an angle
		1.2×2 km/s	B)	11.2km/s	C)	$11.2 \sqrt{2} \text{ km/s}$	D)	$11.2 / \sqrt{2} \text{ km/s}$
17	A) com	is dropped from ontinue to hove with same beed along a raight line angentially to be satellite at time	a satellit B)	te revolving arou continue to move with the same speed along the original orbit of satellite	nd the	e earth at a height of 120 l fall down to earth gradually	km: The D)	e ball will - go far away in space
18	whose	radius of curvat	ure is 20	m. The speed of	the c	e "weight lessens" as they ar at the top of the hill is b	etween	1:
		4 m/s and 15 n/s	B)	15 m/s and 16 m/s	C)	16 m/s and 17 m/s	D)	13 m/s and 14 m/s
19	are of		he tempe			sections A1 and A2 and speach rod are T1, and T2.		
		$\frac{K_1}{A_1 S_1} = \frac{K_2}{A_2 S_2}$	B)	$K_1A_1 = K_2A_2$	C)	$K_1S_1 = K_2S_2$	D)	$A_1S_1 = A_2S_2$
20		_	_	ven a constant acc agram in fiure re		ntion 'a' towards the right a nts the surface	along a	straight horizontal

	A)	B)		C	C)	1	D) none of these
	a 		<u>a</u> ,	•	===	a	
					: = = = :		
21	temperature rises to	o 30°C?	_		ring alkali meral is ex		
	A) Na	В)	K	C)	RB	D)	Cs
22	Alkali metals react metals reacts with			hydr	oxide and dihydroge	en. Whic	h of the following alkali
	A) Li	B)	Na	C)	K	D)	Cs
23	The reducing power strongest reducing			ous fa	actors. Suggest the f	factor wh	nich makes lithium, the
	Sublimation enthalpy	B)	Ionization enthalpy	C)	Hydration enthalpy	D)	Electron gain enthalpy
24	Which of the follow	ving metal hy	, ,	basic			
	A) Mg(OH) ₂	B)	Ca(OH) ₂	C)	Sr(OH) ₂	D)	Ba(OH) ₂
25	In the synthesis of byproduct in this pr		onate, the recov	ery of	ammonia is done b	y treatin	g NH ₄ Cl witjhCa(OH) ₂ . The
	A) CaCl ₂	B)	NaCl	C)	NaOH	D)	NaHCO ₃
26	When sodium diss	olves in liqui	d ammonia, a de	ep bl	ue solution is obtain	ed. The	colour of solution is due to:
	A) Ammoniated	B)	Sodium ion	C)	Sodium amide	D)	Ammoniated cation
27	electron By adding gypsum	to cement:					
	Setting time of cement decree	,	Setting time of cement	C)	Colour becomes light	D)	Surface becomes shining
28	Dead burnt plaster	· is:	increases				
	A) CaSO ₄	B)	CaSO ₄ .H ₂ O	C)	CaSO ₄ .1/2H ₂ O	D)	CaSO ₄ .2H ₂ O
29	Washing soda is:						
	A) Na ₂ CO ₃	B)	NaHCO ₃	C)	Na ₂ CO ₃ .10H ₂ O	D)	K ₂ CO ₃
30	Molecular formula	of Glauber's	salt is:				
	A) MgSO ₄ .7H ₂ O	B)	CuSO ₄ .5H ₂ O	C)	Na ₂ SO ₄ .10H ₂ O	D)	FeSO ₄ .7H ₂ O
31	Which of the follow	ving is Lewis	acid?				
	A) AICI ₃	B)	$MgCl_2$	C)	CaCl ₂	D)	BaCl ₂
32	Which of the follow	ving oxides is	s acidic in nature	?			
	A) B_2O_3	B)	Al_2O_3	C)	Ga₂O₃	D)	In_2O_3
33	Boric acid is an ac	id because tl	he molecule:				
	A) Contains replaceable hydrogen ion	B)	Gives up a proton	C)	Accepts OH ion from water releasing proton	D)	Combines with proton from water molecule
34	Quartz is extensive	ely used as p	oiezoelectric mate	erial, i			
	A) Pb	B)	Si	C)	Ti	D)	Sn
35	The most common	ly used reduc	cing agent is:				
	A) AICI3	B)	PbCl2	C)	SnCl2	D)	SnCl4
36	Which of the follow	ing is the mo	st abundant met	al in t	he earth's crust?		

	A)	Fe	B)	Al	C)	Ca		D)	Na	
37	Sha	pe of BF3 molecule is	s:							
	A)	Linear	B)	Planer	C)	Teti	rahedral	D)	Pyran	nidal
38	Tha	ıllium show +1 oxidati	on sta	te because:						
	A)	Its high reactivity	B)	Inert pair effect	C)		Its amphoteric nature		None	
39	The	formula of aluminiun	nitride	e is:		nati				
	A)	AIN	B)	Al3N	C)	AIN	3	D)	AI2N3	3
40	The	rmodynamically most	stable	e form of carbon is	s:					
	A)	Diamond	B)	graphite	C)	Full	erenes	D)	Coal	
41	Brun	ner's glands are found	d in							
42	A) Vitam	Submucosa of stomach in 'K' is needed for	B)	Submucosa of duodenum		C)	Mucosa of stomach		D)	Mucosa of ileum
	A)	Formation of thromboplastin	B)	Conversion of fibrinogen to fibri	'n	C)	Synthesis of prothrombin		D)	Conversion of prothrombin into thrombin
43		h is digested in								
	A)	Duodenum	B)	Stomach and duodenum		C)	Buccal cavity a oesophagus	nd	D)	Buccal cavity and duodebum
44		h hormone influences	contr	action of gall blad	der a	and se	ecretion of pancro	eatic j	uice?	
	A)	Enterogastrone	B)	Gastrin		C)	Choleycystokin	iin	D)	All of them
45	45 Role of hydrochloric acid in stomach:									
46	A) Amyl	To change trypsinogen into active trypsin ase is found in:	B)	To increase food absorption	d	C)	To dissolve enzymes secret from gastric gla		D)	To destroy bacteria in food
	A)	Bile	B)	Gastric juice		C)	Saliva		D)	Saliva and pancreatic
47	Whic	h enzyme does not di	rectly	act upon food sul	bstaı	nce ir	n human small int	estine	∍?	juice
	A)	Trypsin	B)	Lipase		C)	Amylopsin		D)	Enterokinase
48	Gluce	ose is oxidized in the	cell in							
	A)	Cytosol	B)	Mitochondria		C)	Vacuoles		D)	Lysosomes
49	Durir	ng expiration the diaph	nragm	become:						
	A)	Normal	B)	Flattened		C)	Dome shaped		D)	Oblique
50		movement of chloride is known as:	ions f	rom erythrocytes t	to pla	asma	to maintain osmo	otic ba	alance d	during transport of
	gases A)	Chlorination	B)	CO ₂		C)	Bicarbonate sh	ift	D)	Hamburger
51	The d	issociation curve for h	naemo	oglobin is:						phenomenon
	A)	Liner	B)	Hyperbolic		C)	Sigmoid		D)	Hyperbolic
52	Vital	capacity of lung in m	an is :							
	A)	4600 ml	B)	2000 ml		C)	1600 ml		D)	500 ml
53	Whic	h of the following is th	ne last	part of the branch	nes ir	n lung	and takes part i	n excl	hange o	of gases?
	A)	Tracheoles	B)	Alveolar sacs		C)	Bronchioles		D)	Alveoli

54	Lung	gs are enclosed in						
	A)	Perichondrium	B)	Peritoneum	C)	Pleural membranes	D)	Pericardium
55	Majo	or fraction of CO2 is tra	anspoi	rted in human body as	:			
	A)	Caronic acid	B)	Calcium bicarbonate	C)	Carbahaemoglobin	D)	Sodium and potassium bicarbonate
56	A pa	acemaker or SA node	is four	nd in				
	A)	Lungs	B)	Brain	C)	Heart	D)	Spleen
57	Sph	ygmonanomerer mea	sures					
	A)	Blood pressure	B)	Pulse rate	C)	Rate of heart beat	D)	All
58	Duri	ng diastole						
	A)	Blood enters in heart	B)	Blood leaves heart	C)	Blood leaves ventricle	D)	Blood enters lungs
59	Whi	ich of the following is	unmat	ching pair?				
	A)	Heparin-mast cell	B)	Haemoglobin- monocyte	C)	Body defence- lymophocyte	D)	Phagocytosis – neurophils
60	The	thickening of the wall	s of ar	teries is called:				
	A)	Arthritis	B)	Aneurysm	C)	Arteriosclerosis	D)	Vaso contriction

Answer Key

1	_		4	-	,	7			10
I	2	3	4	5	6	/	8	9	10
Α	С	С	В	D	С	D	D	D	В
11	12	13	14	15	16	17	18	19	20
D	Α	Α	D	D	В	В	Α	В	С
21	22	23	24	25	26	27	28	29	30
D	Α	В	Α	Α	Α	В	Α	С	С
31	32	33	34	35	36	37	38	39	40
Α	Α	С	В	С	В	В	В	Α	В
41	42	43	44	45	46	47	48	49	50
В	С	D	С	D	D	D	В	В	d
51	52	53	54	55	56	57	58	59	60
С	Α	D	С	D	С	Α	Α	В	С